inversion through to the chromocenter, one half of the solit being the normal and the other, the inverted half. In such a figure the bands could be carefully followed along the length of the chromosome to the end of the inversion where the matching bands were found in corresponding positions. This figure was also checked by C. B. Bridges. Although the similarity in size and shape of 4D1 and 12A1 make it possible that this interpretation is incorrect, evidence seems to indicate that 4Dl and 12Al are the outside limits of dl-49.

Karp. M. L. The distribution of In chromosome 3 of D. mutant genes affecting the number of sternital bristles in chromoof of at least six mutant genes affecting the number genes affecting the number

of sternital bristles, independently of the

possible effect of the gene markers, has been shown. These genes possess a considerable power of action, approximately 5 to 15 per cent of the manifestation of the character. Being opposite in tendency and alternately located, they are more or less balanced, not only along the whole length of the chromosome, but within its small regions as well. In the chromosome, causing the reduction of 5-6 bristles on 2 sternites of the abdomen, were detected genes which determine conjointly the reduction of 18-21 bristles on the same 2 sternites, and on the other hand there were found genes which together intensify the character by 12-20 bristles. Hence the genic balance of the chromosome examined offers the possibility of a considerable change as to the extent of the manifestation of the character.

Kaufmann, B. P. Drosophila ananassae (D. caribbea)

In the autumn of 1933, D. caribbea was collected in the vicinity of Tuscaloosa, Alabama, which is consider-

ably north of the range of distribution of the species as indicated by Sturtevent. Male flies of this stock have a Jshaped Y-chromosome, whereas the stock used by Metz (1916) had a rod-shaped Y. Recently a Nipponese stock, secured through Dr. W. P. Spencer, has been examined. This also has a J-shaped Y. A dditional material, especially from America, is desired for further study.

Kerkis, J. Sex-Linked vestigial On May 28, 1935 a single like mutant in Drosophila simulans male was found in a normal

mass culture of D. simulans which was like a vestigial

of D. melanogaster. This male was crossed with normal simulans v. The F_1 was normal. Flies from F_1 were inbred and in F_2 there were 269 normal $\frac{1}{2}$, 105 normal $\frac{1}{2}$, and 81 vestigial There were no vestigial 1/4 Males from F, were crossed to their sisters and in F₃ homozygous flies were produced from which a stock has been propagated. One of the & was mated to a yellow white attached 44 of D. simulans and gave in Fo 308 vestigial

 $\delta \delta$ and 254 yellow white $\xi \xi$, 2 mornal $\xi \xi$ and 3 yellow white $\delta \delta$. The latter two classes were produced by separation of the attached X's of the yellow white ??.

The data on the location of the new mutation show that it is located in the right end of the X-chromosome.

Kikkawa, H. Systematics of While examining the sal-Drosophila.

ivary chromosomes of var-ious species of Drosophila

I realized that there are (at least) two different groups with respect to the ratio of the total length of autosomes to length of X-chromosome, viz., the one giving the ratio of about 4:1 and the other, about 1.8:1. D. melanogaster, virilis, funcbris, ananassae, replete, etc. belong to the former group, while D. pseudoobscura, affinis, miranda, etc. belong to the latter. Morphologically, there is also a distinct difference between the two groups in the shape of testis. These characteristics may be worthy of dividing the genus Drosophila into two subgenera. My inference proposed in Proc. Imp. Acad. Tokyo, 9, 1935, may be applicable only to the former group. Full investigation in connection with genetics is now underway.

Parker, D. R. Locus of wy²

(formerly cx_b).

Representation of the male offspring of females where to determine the locus of wy² more accurately. The results are given: v = f - 1163; v = f - 1111; v = f - 1111

wy; there was no crossing over observed between wy and wy in 1328 offspring from wy/wy2.

Stark, M. B. Varieties of tumors. Selected stocks heterozygous for lethel-7, where the 1-7 males die from the development of melanotic growths, show that the tumors occur in characteristically different tissues. A preliminary description of the stocks follows:

of lower intestine

The third-chromosome "benign" tumor is found to involve connective tissue.

Stone, Wilson. Allemorphic phenomena.

y^{35a} An allele, phaenotypically like y1, induced in the inversion, 99b, by

y31e (y303h) A mutation ccompanying a long inversion, probably y3P as designated by Muller, for it gives the same males hypoploid for y and ac by crossing-over with sc. This mutation